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Selection rules for the tip-splitting instability
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The local destabilization of a Saffman-Taylor viscous finger occurs by a splitting of its tip and results in the
formation of two branches separated by a fjord. The accumulation of such instabilities leads to complex
patterns. In this paper we present a detailed analysis of a dynamical model that accounts for the selection of
both the width and the orientation of the fjords growing in a wedge of angleu0. It is shown that the selection
rules have a dynamical origin and are related to the existence of attracting sets that disappear in the absence of
surface tension. We also infer the existence of a critical angleuc560° such that ifu0,uc , the symmetric
tip-splitting becomes unstable.
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I. INTRODUCTION

The displacement of a viscous fluid by a less viscous
in a quasi-two-dimensional Hele-Shaw cell@1# is among the
most studied problems in interfacial pattern formation@2#. A
rich variety of patterns is observed in this configuratio
whereas the opposite situation~the more viscous fluid is
pushing the less viscous one! always leads to a stable fla
interface between the two. After more than one decade
work in this field, most questions concerning the stable
gime observed in the channel geometry are now well und
stood. Historically, the study of the so-called selection ru
that govern the shape of the fingers observed in this confi
ration is at the origin of the wide interest raised by this s
tem. On the contrary, in radial geometry, there is no indi
tion that a steady state is ever achieved. In this sec
configuration, the less viscous fluid initially forms a bubb
~almost a circular interface!, but as more fluid is injected, th
interface becomes unstable, developing fingers or petals
contrarily to the channel case, are eventually destabilized
the so-called tip-splitting instability. The accumulation
such instabilities leads to a ramified, fractal structure, sim
in many aspects to that observed in diffusion-limited agg
gation ~DLA !.

Most questions concerning the unstable regime rem
still unsolved. One of the most striking is the existence o
well defined fractal dimensionD f . Several theories@3–6#
exist that predict valuesD f;1.7. Recently, it has bee
pointed out@7# that viscous fingering and DLA do not belon
to the same universality class~thus, do not have the sam
fractal dimension!, contrary to a well established consens
An experimental confirmation of this fact remains still diffi
cult. The fractal structures observed in viscous fingering
made up of wedge-shaped building blocks@8#. Roughly
speaking, each finger grows in a wedge formed by its t
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neighbors. The regions of fluid that separate two neigh
fingers are called fjords in the following. There is experime
tal evidence@8# for the existence of a critical angleuc : when
the wedge angleu0,uc , there is competition between th
two fingers formed in the tip-splitting and the result will be
side-branched finger. Instead, whenu0.uc , the two fingers
coexist. Motivated by the importance of the wedge geome
Combescotet al. @9# showed by a careful study of the sele
tion mechanisms in this geometry that both the angular wi
and the radius at which tip splitting occurs are selected
surface tension. However, this analysis relies on the assu
tion that the interface is self-similar, a fact well verified
the early stages of the growth but certainly wrong in t
vicinity or the subsequent development of the instabili
Sarkar @3# used this idea to estimateD f by counting the
number of tip splittings along the growth. This appears to
the simplest mean field theory accounting for the value
D f . It contains a unique free parameterb, related touc and
the selected width of the fjords. A theoretical prediction forb
is given below.

The studies mentioned so far boil down to the solution
a time independent integral equation describing the shap
the interface. A different line of thought started with th
work of Tanveer@10#, which rather focused on the singula
character of the surface tension term which is at the origin
the selection rules. One of the most striking results obtai
in this direction is the fact that the addition of a small surfa
tension may induce strong perturbations even inO(1) time.
This is obviously difficult to monitor experimentally but ha
been verified numerically@11#. It is interesting to note tha
the connection between the singular character of surface
sion and the existence of selection rules has been critic
by some authors@12# who suggested that the latter are
simple dynamical effect. Contrary to the integral equati
method, Tanveer’s analysis is applicable in time depend
situations and relies on the notion of singularity of the co
formal mapping. This notion will be explained in detail i
the following section.

The aim of this paper is to introduce of a model that
able to handle tip-splitting and non-self-similar solutions in
©2004 The American Physical Society01-1
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simple and unified way. Our initial motivation comes fro
the experimental observations made by Lajeunesse
Couder @8# that the form of the fjord separating any tw
fingers formed in a tip splitting can be understood usin
simple geometrical construction. The middle point of ea
fjord describes a trajectory that in Ref.@8# was approximated
by that of a perturbation advected by the selected zero
face tension solution@13# ~this construction will be called in
the following the ‘‘normal rule’’!. This argument was also
generalized to secondary tip-splittings, using the notion
virtual walls. They also observed a critical angleuc;70°,
significantly smaller than the value predicted in Ref.@4#.
This appears to be the first unambiguous experimental se
data clearly showing that the increasing complexity of
patterns observed in the unstable regime corresponds
hierarchy of virtual cells of various sizes. Similar resu
have been obtained by Arneodoet al. for DLA clusters@14#
and quasi-two-dimensional electrodeposition clusters.

The rest of the paper is organized as follows. In the f
lowing section, we introduce the notion of the conform
mapping and the associated singularities. This will be use
derive an approximate dynamical model that we study in
third section. Next, we consider the phase portraits of
dynamical system and show the existence of attracting
and relate them to selection rules. A final section will dra
some conclusions and perspectives.

II. CONFORMAL MAPPINGS

The basic difficulty in studying the evolution of the flui
interface in the classical Saffman-Taylor experiment is
fact that the normal velocity at each point of the interface
given by the normal gradient of the pressurep in the more
viscous fluid, which in turn satisfies the Laplace equat
Dp50, provided the Darcy approximation is assumed. T
solution of this equation is not trivial, even numerically.
convenient way to circumvent this problem is the use o
change of variables, the so-called conformal mappingf (j,t),
which maps the interior of the unit circleuju<1 onto the
domain occupied by the more viscous fluid. Furthermore,
interface at timet, G(t), appears now to be the image of th
unit circle: for each pointzPG(t), there exists an angleu
5u(z,t) such thatz5 f (eiu,t). The main interest of such
mapping is that the transformed Laplace equation in the n
j coordinates is again the Laplace equation. This is stri
due to the fact thatf (j,t) is conformal, which is analytic and
of nonzero derivative, in the interior of the unit disc. Furthe
more, the solution of the Laplace equation in the interior
the unit disk is explicitly known through the use of the Po
son kernel. Let us now be more precise. The conformal m
ping will be written as

f ~j,t !5
a~ t !

j
1k~j,t !, ~1!

where a(t) can be chosen to be positive andk(j,t) is an
analytic function in the whole disk, including 0. In the abo
equation, the first term corresponds to a circle of radiusa(t),
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perturbed by the deformationk(j,t). Let F(j,t) be the com-
plex velocity potential. It can be shown@10# that

F~j,t !52
Q

2p
ln j1v~j,t !, ~2!

wherev is an analytic function inuju,1 such that

Rev52T
1

u]j f u
ReS 11

]j
2 f

]j f D when uju51. ~3!

Here,Q stands for the net flux imposed at infinity andT is
the surface tension coefficient, such that the pressure dro@p#
at the interface is@p#5Tk, k being the local curvature~this
is the Laplace condition!.

The evolution equation] t f 5F( f ) @10,15# of the confor-
mal mapping is just a translation of the evolution equation
the interfacevn5]np, wherevn is the normal velocity of the
interface and]np is the normal gradient of the pressure.
has been shown@10# that

F „ f ~j,t !…5j]j f I ~j!, ~4!

whereI (j,t) is the normal velocity at the point of the inte
face corresponding toj:

I ~j!5
1

2pEuj8u51

dj8

i j8

j1j8

j82j

1

u]j8 f u2

3S 2
Q

2p
1Re@j8]j8v~j8!# D . ~5!

This expression highlights the two contributions of the v
locity at the interface, the first one coming from the boun
ary conditions at infinity~the net flux is fixed to be equal to
Q) and the other one being related to the Laplace condit
The expression ofv(j) involves the evaluation of an inte
gral ~Poisson! kernel, and is difficult to compute explicitly
due to the presence of the term 1/u]j f u:

v~j!52
T

2pEuj8u51

dj8

i j8

j1j8

j82j

1

u]j8 f u
ReS 11j8

]j8
2 f

]j8 f
D .

~6!

In Ref. @15#, v(j) was actually computed through a nu
merical evaluation@16# of the integral in Eq.~6!. This ren-
ders the resulting equations difficult to study analytica
~and even numerically!.

The mappingf (j,t) is analytic in 0,uju,1 but may dis-
play singularities outside. In the absence of surface tens
the number and nature~local exponent! of each singularity
are conserved; namely, ifN singularities are present in th
initial condition, typically the asymptotic interface will dis
play N deformations~protrusions in the case of poles inf j ,
cusps in the case of zeros off j) that correspond to the ap
proach of these singularities to the unit circle. The situat
is rather different in the presence of surface tension@10#.
Several authors have already shown that the effect of sur
tension can be dramatic on the number~creation of daughter
1-2
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SELECTION RULES FOR THE TIP-SPLITTING INSTABILITY PHYSICAL REVIEW E69, 026301 ~2004!
singularities with exponent24/3) and the motion of thes
singularities. It has also been shown@11# that arbitrarily
small values of surface tension may induce significant p
turbations of the interface inO(1) time. To give a physica
description of this creation process, it is useful to refer to
situation created by the introduction of nonlinearities in
linear equation, such as the simplest linear diffusion eq
tion. It is well known that in the linear case, any finite set
Fourier modes is an exact solution of this equation~with
periodic boundary conditions!, whereas the introduction o
any nonlinearity induces the creation of small scale mo
that have to be taken into account. Similarly, in the abse
of surface tension, any finite set of logarithmic singularit
is an exact solution of Eq.~4! @17#, even though the equa
tions are nonlinear. This is due to the existence of conse
tion laws @18#. The addition of surface tension induces t
creation of daughter singularities, with exponent24/3 @10#.
Clearly, these new singularities are responsible for the
face induced tip-splitting process.

In the following, we consider a simple model of this com
plex process in which the singularities are strictly logari
mic:

f ~j,t !5
a~ t !

j
1 (

k51

N

(
l 50

s21

ck~ t !e22ip l /sln@j2pk~ t !e2ip l /s#,

~7!

wheres is a positive integer. In Ref.@15#, it was shown that
the restriction to logarithmic singularities is not a real lim
tation, because an accumulation of such singularities can
proach arbitrarily close@19# a singularity of the form (j
2j0)24/3, as those expected in the present problem; nam
this boils down to the standard Pade´ approximation@19# of
the function]j f by a rational function, as can be seen
differentiation of Eq.~7!. In the following, we will adopt the
following notation for this derivative:

]j f ~j,t !5A~ t !j22)
k

js2zk~ t !s

js2pk~ t !s
, ~8!

where thezk’s (pk’s! are the zeros~poles! of ]j f (j,t). Be-
causef (j,t) is conformal in 0,uju,1, we haveuzk(t)u.1
and upk(t)u.1. It is easy to see that

a~ t !52A~ t !)
k

@zk
s~ t !/pk

s~ t !# ~9!

and

ck5~A/spk
s11!S)

j
~pk

s2zj
s!Y )

j Þk
~pk

s2pj
s! D . ~10!

In the following, we will note pk5(11rk)e
ifk, zk5(1

1r k)e
iuk. The position of the bottom of each fjord is

2Ae2 ifk1ckln(eifk2pk) ~we havezk'pk andrk→0 when
t→1`), and its width ispucku. This can be seen by inspec
ing the behavior of the logarithmic function in the vicinity o
j5eifk. For the sake of simplicity, let us consider the sim
plest case of a single singularity. It is possible to obtain
02630
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exact form of the bottom of the fjord in the limitt→1`. In
order to do so, let us introduce the functiona:t °a(t) that
will be used as a parametrization of the interface. In orde
get a finite limit as t→1`, it is necessary to seta(t)
5gr1(t)1f1(t), whereg is a parameter. The asymptoti
shape of the fjords is then

ž~g!5 lim
t→1`

f ~eia(t),t !, ~11!

wheregP] 2`,1`@ . Taking into account the hypothesis o
the asymptotic behavior ofck andpk , we get

ž~g!5z~1,̀ !1c1~`!~ lnA11g22 iarctang!, ~12!

wherez(1,̀ ) is the position of the bottom of the fjord whe
t→1`. This simple computation shows that the parame
zation of the interface in the vicinity of the bottom of th
fjords is closely related to the distance of the poles to the u
circle. The latter being asymptotically very small, this will b
one of the main difficulties in the numerical implementati
of the model.

III. THE DYNAMICAL MODEL

From the above considerations, it is clear that the fo
given by Eq.~7! is not an exact solution of the evolutio
equation~4!. In the present case, this is due to the fact t
the surface tension term induces singularities that are
present in Eq.~7!. Following the approach in Ref.@15#, the
dynamics will be defined in such a way that the error

E~ t !5E
uju51

U d

dt S A~ t !

j2 )
k51

N
js2zk

s~ t !

js2pk
s~ t !

D 2]jF „ f ~j,t !…U2

dj

~13!

is minimized. In other terms, at each timet, we choose the
time derivatives of the variablesA, zk , andpk in such a way
that the average~on the unit circle! deviation between the
physical dynamics and the dynamics of the model is m
mized. One of the advantages of using the logarithmic
proximation of the conformal mapping is that the minimiz
tion of E(t) can be done in an analytic way. If the evolutio
equation is written in the form] t$ ln@]j f (j,t)#%5F(j,t), where
F(j,t)5]j@F „ f (j,t)…#/]j f :

F~j,t !5S 11j
]j

2 f ~j,t !

]j f ~j,t ! D I ~j,t !1j]jI ~j,t !, ~14!

the minimization yields the following linear system:

(
j

s

~zi* zj !
s21

żj

zj
2(

j

s

~zi* pj !
s21

ṗ j

pj
5F~1/zi* !2F~0!,

~15a!

(
j

s

~pi* zj !
s21

żj

zj
2(

j

s

~pi* pj !
s21

ṗ j

pj
5F~1/pi* !2F~0!,

~15b!
1-3
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together with the equation

Ȧ

A
5F~0!2sS (

j

żj

zj
2(

j

ṗ j

pj
D . ~15c!

In Ref. @15#, it was shown that despite its simplicity th
model can account for many aspects of the tip-splitting
stability, and compares well to the interfaces obtained b
pseudospectral method@20#. Here, we show an example th
illustrates the typical behavior of the singularity dynam
~Fig. 1! and the corresponding behavior for the interfa
~Fig. 2!. Six couples of zeros and poles are present att50.
In order to obtain an almost circular interface att50, zk
'pk ,k51, . . . ,6. Thetrajectories of the singularities dis
play most of the time a first short regime where the dynam
is quite rapid and some of the zeros and poles can get q
far from the unit circle, although eventually they becom
closer. Surprisingly, this regime does not have an analo
the physical space: the interface evolves smoothly and o
in the second regime, when the poles get very close to

FIG. 1. A typical example of trajectories for the zeros~light
line! and the poles~dark line! of ]j f in the complex plane. The
corresponding interfaces are represented in Fig. 2. First far from
unit circle, the couples of singularities approch a it at differe
speeds. For the sake of clarity, parts of the trajectory of the zerz2

located near (1,1.5) att50 are not represented (uz2u.18 at t
51.5).

FIG. 2. Successive interfaces corresponding to the set of si
larities of Fig. 1.
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unit circle, there is a significant incidence on the shape of
interface and the fjords start to form. Notice also that t
couples initially present are not necessarily those that fo
asymptotically. This should be compared to the asympto
results shown by Tanveer, which imply that the daugh
singularities are, at timesO(1), in a neighborhood of size
O(T1/3) around the singularity of the zero surface tensi
problem. Such a behavior is not immediately evident fro
our data. The difference is probably due to the fact that
value of the surface tension parameter we used here is n
the range of validity of the results in Ref.@10#. Let us also
notice that the distance that the pole singularities move a
from the unit disk decreases in our model~results not shown
here! when T decreases. A detailed comparison of such
behavior against the perturbative calculations of Tanveer
be reported elsewhere.

We have used three methods to evaluate the time der
tives of the dynamical model. The first method computes
the integrals appearing in the right-hand side~rhs! of Eq.
~15a! and ~15b! by direct discretization on thej variables,
and the principal value integral needed to computev(j) is
done using the fast Fourier transform@16#. Unfortunately,
when the poles get close to the unit circle, this transfo
requires a huge number of points in order to approximate
almost singular functions in the integrand ofI (j) and the
method becomes quickly unpractical. A second approach
lies on the observation that

I ~j,t !52
1

2pEuj8u51

dj8

i j8

j81j

j82j

vn~j8!

u]j f ~j8!u
, ~16!

wherevn is the normal velocity. In other words, oncevn is
known on the interface, relation~16! provides the necessar
information to compute the time derivatives ofzk , pk , and
A. Contrary to the first method, the discretization is done
the physical interface, and the recourse to the Fourier tra
form is not necessary.vn can be computed using the metho
in Ref. @20#, although an appropriate parametrization of t
interface is needed in order to get an efficient algorithm. T
numerical details will be given elsewhere.

A third method was introduced in order to get furth
insight into the structure of the dynamical system~15! and
provide a fully analytical approximation of the surface te
sion term, by the use of a Pade´ approximation @19# to
1/u]j f u. This is based on the identity~valid for uju51)

ujs2psu

ujs2zsu
5Ap* s

z* s
A11

ps2zs

zs2js
A11

1/p* s21/z* s

1/z* s2js

~17!

and the Pade´ approximation

A11z5 lim
P→1`

)
a51

P
ma~P!

na~P!

z2na~P!

z2ma~P!
, ~18!

wherena(P) andma(P) belong to ]2`,21@ . Using these
expressions, it is straightforward to compute the approxim
tion ~for uju,1)

he
t

u-
1-4
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v~j!'v01(
k

v1k

js2zk
s

1(
k

v2k

js2pk
s

1(
a,k

v3a,k

js2pa,k
s

,

~19!

with

pa,k
s 5

11ma

ma
zk

s2
1

ma
pk

s , a51, . . . ,P, ~20!

where P is the order of the Pade´ approximation. Equation
~19! defines how new singularities are added to the mo
starting from the set of initial singularitieszk ,pk , those
given by the interface itself, the inclusion of the curvatu
term creates automatically thepa,k set. These new singulari
ties are always located on the segment going fromzk to pk .
In order to reach the minimum ofE(t), new singularities
located atpa,k should be added in turn as variables of t
model. Here, we decide to limit the set of variables to
zeroszk and polespk of the interface. However, in order t
illustrate how increasing the number of singularities i
proves the approximation to the actual solution, we show
Figs. 3 and 4 the patterns obtained with, respectively, 432
and 433 couples of zero poles. The initial interface only h
432 couples of singularities that correspond to the 432
deeper fjords. The surface tension induces a secondary
splitting on the side of the thickest finger as can be seen
the interface corresponding to the ‘‘true’’ solution~thick line
in Figs. 3 and 4!. Adding four new couples of singularitie

FIG. 3. Comparison between the interface obtained by the p
dospectral code~thick line! and that from theN-singularity model
with N52 ands54 ~thin line!.

FIG. 4. Same as Fig. 3 but withN53. The increase in the
number of singularities gives a better approximation of the third
splitting.
02630
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~Fig. 4! significantly improves the approximation. It is wort
noting that the position of the third fjord is quite robust,
fact experimentally observed by Lajeunesse and Couder@8#.
Actually, the four new singularities can be placed almo
randomly~provided the zero-pole couple is far from the un
circle!; they eventually converge to a well defined angu
position. This will be partly explained below.

Using approximation~19!, the evaluation of the rhs of Eq
~15! is straightforward. The resulting expression is somew
lengthy and will be given elsewhere. We thus obtain a clo
set of explicit evolution equations for (A,zk ,pk) of the form

@Ȧ,żk ,ṗk#5FP~A,zk ,pk!, ~21!

whereFP is a vector of algebraic functions, dependent on
degreeP. This Pade´ approximation will allow us to study in
detail the whole phase portrait determining the singula
dynamics.

The general analysis of such a system is still difficult. W
will rather study some generic situations. In order to mim
the experimental results of Ref.@8#, we will first considers
symmetric solutions (s even, due to the zero-flux condition
at the walls!, corresponding to viscous fingering in a wed
of angle 2p/s @21#. Under such conditions, the primar
fjords, associated with the couple (z1 ,p1) are parallel to the
walls of a wedge with angle 2p/s and the secondary fjord
@corresponding to (z2 ,p2)] yield the first tip-splitting.

IV. ONE-SINGULARITY SYMMETRIC SOLUTIONS

In a real experiment, the interface between the two flu
is initially smooth, which means that at the very beginnin
all the singularities are far from the unit circle and thea(t)/j
term is predominant. Because of the constant flux condit
a(t);uA(t)u;t1/2. As the growth proceeds, all the singular
ties approach the unit circle@10#, but this approach is hier
archical, in the sense that only a limited number of singula
ties can be located at a certain distance from the unit dis

In close analogy with previous studies@9#, in Ref.@21# we
studied the selection mechanism that fixes the value of
width of the primary fjords, i.e., the valuer 1(t) of the closest
~primary! singularity. We give here a detailed presentation
this point.

When only one singularity is present, the system of eq
tions ~15! becomes

s

~z* z!s21

ż

z
2

s

~z* p!s21

ṗ

p
5F~1/z* !2F~0!, ~22!

s

~p* z!s21

ż

z
2

s

~p* p!s21

ṗ

p
5F~1/p* !2F~0!. ~23!

This system can be solved to yield

u-

p

1-5
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S 12
~ upu2s21!~ uzu2s21!

u~pz* !s21u2 D ż

z

5
uzu2s21

s S @F~1/z* !2F~0!#

2
upu2s21

~z* p!s21
@F~1/p* !2F~0!# D , ~24!

S 12
~ upu2s21!~ uzu2s21!

u~p* z!s21u2
D ṗ

p

5
upu2s21

s S uzu2s21

~p* z!s21
@F~1/z* !2F~0!#

2@F~1/p* !2F~0!# D . ~25!

From the equations above, it is clear that ifz and p are
initially real, they remain real for all times@in that case,
F(0), F(1/z* ), andF(1/p* ) are also real#. Furthermore, we
have seen that the argument ofa can be chosen to be inde
pendent oft (Im@F(0)#50) so thata is also real. Therefore
we just have to consider the variablesa, r, andr.

In the limit r→0, Eqs.~24! and ~25! become

ṙ

11r
5@11O~r!#@~11r !2s21#@F~1/z* !2F~0!#/s

22r@11O~r!#@~11r !s11#@F~1/p* !2F~0!#

~26!

and

ṙ

2r
5@11O~r!#@~11r !s11#@F~1/z* !2F~0!#

2@11O~r!#@F~1/p* !2F~0!#. ~27!

At this point, it is convenient to separate inF the contri-
bution due to the fluxQ from that one due the surface te
sion T: F5FQ1FT . The FQ term can be computed explic
itly:

FQ~0!5
1

uAu2 S )k

pk
s

zk
s

2(
k

bkD Q

2p
, ~28!

FQ~1/pj* !5
2Q

2p

1

uAu2

3F S 211(
k

spj*
s~zk

s2pk
s!

~12zk
spj*

s!~12pk
spj*

s!
D

3S (
k

ak

zk
s

11zk
spj*

s

12zk
spj*

s
1cD
02630
2(
k

2spj*
sak

~12zk
spj*

s!2G , ~29!

and

FQ~1/zj* !5
2Q

2p

1

uAu2 F S 211(
k

szj*
s~zk

s2pk
s!

~12zk
szj*

s!~12pk
szj*

s!
D

3S (
k

ak

zk
s

11zk
szj*

s

12zk
szj*

s
1cD 2(

k

2szj*
sak

~12zk
szj*

s!2G ,

~30!

which leads, in the limitr→0, to the following expressions

FQ~0!;
Q

2p

1

uAu2
2

~11r !s@11~11r !s#
, ~31!

FQ~1/z* !2FQ~0!;
Q

2p

1

uAu2

22

@~11r !s11#2~11r !s
,

~32!

FQ~1/p* !2FQ~0!;
Q

2p

1

uAu2

~s22!~11r !s12

@~11r !2s21#~11r !s
.

~33!

On the other hand, in the limitr→0 andr→0, we find that

FT~0!;Ta0uAu23r0r 21, ~34!

FT~1/z* !2FT~0!;TazuAu23r0r 23, ~35!

FT~1/p* !2FT~0!;2TapuAu23r21r 22, ~36!

wherea0 , az , andap are positive constants.
When T50, we get from relations~26!, ~27!, ~32!, and

~33!

ṙ

11r
52

Q

2p

1

uAu2
2@~11r !s21#

s@~11r !s11#~11r !s
@11O~r!#.

~37!

and

ṙ

2r
52

Q

2p

1

uAu2
s

~11r !2s21
@11O~r!#. ~38!

From Eqs.~37! and~38!, the asymptotic behavior ofr andr
in the limit r→0 andr→0 is

r;
r 0

At
, ~39!

r;r0e2At/r 0. ~40!
1-6
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Therefore, whenT50, r 1(t);t21/2, and all the fjords have a
fixed, but arbitrary width;puA(t)ur (t), dependent on the
initial condition. It should also be stressed that these~exact!
solutions are not self-similar.

For any positive value ofT, the evolution equations be
come

ȧ;
Q

2p

1

a
1

Ta0

a2r
, ~41!

ṙ;2
Q

2p

r

uAu2
1

2T~az12ap!

uAu3r 2
, ~42!

ṙ;2
Q

2p

r

uAu2r
1

Tap

uAu3r 2
. ~43!

Assuming 1/ar5O(1) when t→1`, we get from Eq.
~41! that a;a0At, thusuAu;A0At with A05AQ/p and the
behavior ofA is significantly the same as withT50.

The behavior of the right-hand side of Eq.~42! as t→
1` results from the balance of two opposing terms. T
first, independent ofT, term is dominant for the large value
of r, whereas whenr becomes small, the secondT-dependent
term becomes dominant. The solution of Eq.~42! is

r 3;S 6T~az12ap!

A0
3

t1C1D t23/2, ~44!

whereC1 is a constant of the integration. Equation~42! is a
typical example of singularly perturbed system: for a
small value ofT, the perturbative term becomes eventua
dominant. We conclude thatr (t);r 1,0t

21/6, where the con-
stantr 1,0 depends onT and on the symmetry, but is indepe
dent of the initial condition. Therefore, in the present co
text, the selection of a particular solution implies t
existence of a stable fixed point for the variabler̃ 1(t)
5uA(t)u1/3r 1(t), to which all the solutions are attracted. A
illustration of this behavior is given in Fig. 5, wherer (t) has
been plotted as a function oft for different initial conditions,
both with T.0 andT50.

Let us note that this method@21# of explaining selection
in viscous fingering is completely independent of previo
approaches and yields a new argument in favor of the mi
scopic mechanism hypothesis@22#.

FIG. 5. Comparison of the behavior ofr (t) ast→1` when~a!
T.0 ~all the initial conditions converge to a unique solution! and
~b! T50.
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The evolution equation~43! for r can also be integrated
and shows a similar behavior. We have

r;@C21R~ t !#expS 2
6Qt1/6

2pA0
2r 0

D , ~45!

whereC2 is a constant with respect tot andR(t) reads

R~ t !5
Tap

A0
3r 0

2E1

t

x27/6expS 6Qx1/6

2pA0
2r 0

D dx. ~46!

As for r, the surface tension changes drastically the evolut
of r when t→1`. It can be shown~with two integrations
by parts, for instance! that the leading term is

r;
2p

Q

Tap

A0r 0
t21/3. ~47!

V. SYMMETRIC SOLUTIONS WITH TWO
SINGULARITIES

We now turn to the study of symmetric solutions with tw
singularities. This corresponds to the study of the first t
splitting in the wedge experiments of Couder@8#: the pri-
mary singularities form the fjords parallel to the walls of th
wedge-shaped cell and the secondary singularities will fo
the tip-splitting. According to their experimental observ
tions, it should be expected that the fjords formed in t
process are curved when the secondary singularities are
from the bisector. Figure 6 shows a typical example of h
the two-singularity model approaches curved fjords. In t
figure, we compare the interface evolutions obtained by
model and by a pseudospectral code@20#. The same initial
condition has been used in both cases. The first tip-split
gives a secondary curved fjord, which is approached b
straight fjord that changes its orientation in such a way t
the middle point of its entrance describes accurately
curved fjord. The last tip-splitting observed in this figu
cannot be accounted for by the two-singularity models,
definition.

The aim of this section is a complete description of t
dynamics generated by the interaction between primary
secondary singularities. To achieve this goal, several
proaches are possible. In Ref.@21#, we considered a repre

FIG. 6. A comparison between the interface obtained by a ps
dospectral code~thick line! @20# and the approximation by the two
singularity model~thin line!. The middle point of the fjord entrance
as computed with the second of these methods, is also represe
1-7
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sentative set of particular solutions of the two-singular
model, and concluded the existence of a bifurcation ass goes
from 4 to 6. Although informative, this approach does n
really explain how this bifurcation occurs as, for instan
there is no indication about the existence of unstable fi
points. Here, we adopt a different strategy and draw
phase portrait as given by the Pade´ approximation~21!. As a
first approximation, the primary singularities will be consi
ered as fixed~this approximation was not used in Fig. 6!.
This is certainly reasonable provided the primary and s
ondary singularities are well separated angularly, but
comes problematic as soon as they get close. Still, we are
with a set of four real coupled equations that govern
evolution ofz2 andp2. In order to proceed further, we nee
to eliminate ‘‘irrelevant’’ degrees of freedom. A possibilit
inspired by the notion of stable manifold@23#, is to look for
attracting sets in the space (r 2 ,r2 ,u2 ,f2). If those exist, it is
possible to study the dynamics constrained to any of th
sets, which amounts to an effective reduction of degree
freedom. By analogy with the situation encountered in
study of the primary fjords, it should be expected that
width of the secondary fjords is selected with a value p
sumably dependent on the relative position of its clos
neighbors. Inspired by the ‘‘normal rule’’@8#, it should also
be expected that the orientation of the fjord is not arbitra
but depends onf2. The width and orientation of the fjord
associated with the couple (z2 ,p2) are given by the module
and phase of c2 which asymptotically behaves as
2Ae2 if2@r 21 i (u22f2)#. Therefore, we expect that, fo
each set of values ofz1 ,p1 ,r2 ,f2, there exist stable fixed
points for r 2 and f22u2, to which the solutions are at
tracted. This indeed is the case, as can be seen in Fi
Before drawing the reduced phase portrait, it is useful
make time independent the attracting sets. We have foun
convenient to look for fixed pointsr̃ 2,0 and d2,0 of the res-
caled variablesr̃ 25uAu1/3r 2 andd25uAu1/3(u22f2). From a
numerical point view, the fixed points are found by iterati

a Runge-Kutta algorithm until the time derivativesr̃̇ 2 andḋ2
are smaller than some threshold.

FIG. 7. Phase portrait in the (r̃ 2 ,d2) space, obtained withr2 and
w2 fixed, s54. All the trajectories converge towards a fixed po
located in the vicinity of (0.11,0).
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Properly speaking, the method to eliminater̃ 2 and d2 is
not an adiabatic reduction, in the sense that there are not
different time scales in Eq.~21!. In this sense, the method i
expected to be accurate only asymptotically. In order to
this point, we run a set of simulations in which, fors56, the
initial angular position of the secondary singularity is varie
r̃ 2,0 andd2,0 can be computed~Figs. 8 and 9! either by using
(z1 ,p1) as given by the selected one-singularity soluti
~dots! in which casez1 and p1 are mostly constant or a
given by the computed two-singularity solution~open
squares!. In the second case, (z1 ,p1) can significantly differ
from the one-singularity solution. In Figs. 8 and 9 are a
shown the actual~nonasymptotic! values taken byd2 andr 2.
These data give support to the claim that the asympt
behavior ofr̃ 2 andd2 is governed by the position of the fixe
points r̃ 2,0 andd2,0.

The asymptotic phase portrait as reduced to the mani
r̃ 25 r̃ 2,0(r2 ,f2),d25d2,0(r2 ,f2) for s54 and s56 can

FIG. 8. Plot of the predicted asymptotic valuesd2,0 of d2 as a
function of f2 for a series of independent simulations,s56. Con-
tinuous line: nonasymptotic values obtained in the simulation w
two couples of singularities. See text for further details.

FIG. 9. Plot of the predicted asymptotic valuesr̃ 2,0 of r̃ 2 as a
function of f2 for a series of independent simulations,s56. Con-
tinuous line: nonasymptotic values obtained in the simulation w
two couples of singularities. See text for further details.
1-8
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SELECTION RULES FOR THE TIP-SPLITTING INSTABILITY PHYSICAL REVIEW E69, 026301 ~2004!
now be computed. In order to obtain a time independ
phase portrait, we user12[ ln r1 /ln r2 instead of the variable
r2. The corresponding phase portraits fors54 ands56 are
shown in Figs. 10 and 11. The differences between the
are striking. Fors54, a fixed saddle point exists (f2
;40°,r12;1.02), splitting the phase space into two regio
~i! the basin of attraction of the symmetric tip-splitting a
~ii ! all the solutions that are eventually attracted tof250.
When s56, the first region disappears, as the fixed po
becomes unstable in the two directions. The asymptotic
havior of thef2→0 solutions is also different in the tw
cases. Whens54, r12 grows without limit asf2→0, and
p2;z1, which implies that (z2 ,p2) gets very close to the
principal singularities and simply corrects the singular
structure of the primary fjord. Therefore, in this case, ther
no formation of a secondary fjord. According to Tanvee
theory @10#, a singularity with a24/3 exponent is expecte
rather than a simple pole or even a collection of poles, a
the case in the model. It should be expected that the cor
tions to the singularity structure provided by the seco
couple (z2 ,p2) are such that, locally, the interface is closer
that given by a24/3 singularity. This remains to be prove

On the other hand, whens56, r12 stays bounded. This

FIG. 10. Reduced vector field describing the dynamics
(r12,f2), s54.

FIG. 11. Reduced vector field describing the dynamics
(r12,f2), s56.
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corresponds to the formation of a secondary fjord in one s
of the main finger.

VI. NONSYMMETRIC TWO-SINGULARITY SOLUTIONS

In the Introduction of this paper, we mentioned the expe
mental findings of Lajeunesse and Couder@8# about the ex-
istence of a critical angleuc such that for wedge anglesu0
,uc , the symmetric tip-splitting is unstable. The results p
sented in the preceding section show that 90°>uc>60°. To
get a more precise value ofuc , we need to relax the sym
metry constraints. For this, we considereds52 singularity
configurations withtwo couples of principal singularities, an
gularly separated by an arbitraryu0. This reasonably ap-
proaches a wedge geometry with apex angleu0, as can be
seen in Fig. 12. However, it is worth stressing that t
asymptotic value ofu0 is not necessarily that given as th
initial condition. This is due to the delicate balance betwe
the principal-principal and principal-secondary singular
interactions. This also reflects the fact that the singula
dynamics in a wedge is certainly simpler than that in an op
geometry. For each of the values ofu0 reported in Fig. 13,
which correspond to the asymptotic value of the angu
separation between the principal singularities, we compu
the reduced phase portrait as explained in the preceding
tion. The angular position of the saddle point has been
ported in Fig. 13. The fact that (u0/22usaddle)

2 behaves lin-
early as a function ofu0260° supports the claim that th
saddle point arises from a pitchfork bifurcation@23# at

f

f

FIG. 12. Example of the solutions obtained with two couples
principal singularities, separated by an angle of 50°, interac
with a third couple that leads to the tip-splitting.

FIG. 13. Plot of (u0/22usaddle)
2 as a function ofu0260°.
1-9
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u0560°5uc . This is compatible with the experimental ob
servations of Lajeunesse and Couder@8,24#.

VII. CONCLUSIONS

In this paper, we have studied a model for the growth
the interface separating two immiscible fluids in a He
Shaw cell. The model is based on the assumption that
shape of the fjords that form on the interface is logarithm
This appears to be a rather natural assumption when vie
as a Pade´ approximation to the conformal mapping of th
interface. One advantage of the model is that it becom
exact for zero surface tension, and yields explicit dynam
equations otherwise. The study of the latter shows that
vious results concerning the existence of selection rules
tually boil down to the existence of fixed points for the d
namics of certain variables. Moreover, the same argum
can be extended to more complex situations, where prim
and secondary fjords interact. In particular, we have sho
that it is possible to derive selection rules for the width a
orientation of the secondary fjords, in agreement with
experimental observations of Lajeunesse and Couder@8#.
However, it is still unclear why the additional singularitie
that correct the logarithmic shape imposed in the pres
model do actually arrange in such a way that the middle
of the fjord follows what we have called the ‘‘normal rule
Our analysis yields also a critical angleuc560°, and b
C

.

nd

ia

d,
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50.40 @25#, which impliesD f51.86 using the approxima
tions in Ref.@3#. We leave as an open question whether
above considerations can be generalized to more gen
situations. In the simplest mean field model studied so
such as that in Ref.@3#, it is assumed that the selection rule
derived at the beginning of the growth can be applied in
subsequent stages of the growth. This is not obvious from
form of the coupling between different singularities, whic
decays fairly slowly @as 1/(z2z8)3]. A somewhat unex-
pected consequence is that the random appearance o
tip-splitting phenomenon actually boils down to a slow
(;Tt21/6) convergence to a limited number of fixed point
f250° whenu0,60°, f250° or f25u0/2 otherwise. In
other words, the apparent dependence on initial condition
viscous fingering is quite different from that of classic
finite-dimensional chaos. The picture suggested here is ra
that of a dynamical system with an infinite number of sad
points that are explored successively as the singularities
proach the unit circle.
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