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Selection rules for the tip-splitting instability

A. Pereird
Centre de Recherche Paul Pascal, CNRS, Avenue Schweitzer, 33600 Pessac, France

J. Elezgaraly
IECB, 16 Avenue Pey-Berland, 33607 Pessac, France
(Received 24 June 2003; revised manuscript received 20 October 2003; published 23 February 2004

The local destabilization of a Saffman-Taylor viscous finger occurs by a splitting of its tip and results in the
formation of two branches separated by a fjord. The accumulation of such instabilities leads to complex
patterns. In this paper we present a detailed analysis of a dynamical model that accounts for the selection of
both the width and the orientation of the fjords growing in a wedge of afglét is shown that the selection
rules have a dynamical origin and are related to the existence of attracting sets that disappear in the absence of
surface tension. We also infer the existence of a critical afgie60° such that ifd,<6., the symmetric
tip-splitting becomes unstable.
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I. INTRODUCTION neighbors. The regions of fluid that separate two neighbor
fingers are called fjords in the following. There is experimen-
The displacement of a viscous fluid by a less viscous onéal evidencq 8] for the existence of a critical anglg : when
in a quasi-two-dimensional Hele-Shaw ddll is among the the wedge angl&d,< 6., there is competition between the
most studied problems in interfacial pattern formatigh A  two fingers formed in the tip-splitting and the result will be a
rich variety of patterns is observed in this configuration,side-branched finger. Instead, whég> 6., the two fingers
whereas the opposite situatidthe more viscous fluid is coexist. Motivated by the importance of the wedge geometry,
pushing the less viscous gnalways leads to a stable flat Combescoet al.[9] showed by a careful study of the selec-
interface between the two. After more than one decade dfion mechanisms in this geometry that both the angular width
work in this field, most questions concerning the stable reand the radius at which tip splitting occurs are selected by
gime observed in the channel geometry are now well undersurface tension. However, this analysis relies on the assump-
stood. Historically, the study of the so-called selection ruledion that the interface is self-similar, a fact well verified in
that govern the shape of the fingers observed in this configuhe early stages of the growth but certainly wrong in the
ration is at the origin of the wide interest raised by this sys-vicinity or the subsequent development of the instability.
tem. On the contrary, in radial geometry, there is no indica-Sarkar[3] used this idea to estimat®; by counting the
tion that a steady state is ever achieved. In this secondumber of tip splittings along the growth. This appears to be
configuration, the less viscous fluid initially forms a bubble the simplest mean field theory accounting for the value of
(almost a circular interfagebut as more fluid is injected, the D;. It contains a unique free paramef@y related tod. and
interface becomes unstable, developing fingers or petals thahe selected width of the fjords. A theoretical prediction for
contrarily to the channel case, are eventually destabilized bis given below.
the so-called tip-splitting instability. The accumulation of  The studies mentioned so far boil down to the solution of
such instabilities leads to a ramified, fractal structure, simila@a time independent integral equation describing the shape of
in many aspects to that observed in diffusion-limited aggrethe interface. A different line of thought started with the
gation(DLA). work of Tanveer{10], which rather focused on the singular
Most questions concerning the unstable regime remaicharacter of the surface tension term which is at the origin of
still unsolved. One of the most striking is the existence of athe selection rules. One of the most striking results obtained
well defined fractal dimensio®;. Several theorie$3—6]| in this direction is the fact that the addition of a small surface
exist that predict valueD;~1.7. Recently, it has been tension may induce strong perturbations eve®i) time.
pointed ou{7] that viscous fingering and DLA do not belong This is obviously difficult to monitor experimentally but has
to the same universality clagghus, do not have the same been verified numerically11]. It is interesting to note that
fractal dimensiojy contrary to a well established consensus.the connection between the singular character of surface ten-
An experimental confirmation of this fact remains still diffi- sion and the existence of selection rules has been criticized
cult. The fractal structures observed in viscous fingering ardy some author$12] who suggested that the latter are a
made up of wedge-shaped building blockg]. Roughly  simple dynamical effect. Contrary to the integral equation
speaking, each finger grows in a wedge formed by its twanethod, Tanveer's analysis is applicable in time dependent
situations and relies on the notion of singularity of the con-
formal mapping. This notion will be explained in detail in
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simple and unified way. Our initial motivation comes from perturbed by the deformatide(&,t). Let ®(&,t) be the com-

the experimental observations made by Lajeunesse armlex velocity potential. It can be showa0] that

Couder|[8] that the form of the fjord separating any two

fingers formed in a tip splitting can be understood using a _

simple geometrical construction. The middle point of each (&)=~ ﬂln sro(&), 2

fjord describes a trajectory that in R¢8] was approximated

by that of a perturbation advected by the selected zero suwherew is an analytic function if¢[<1 such that

face tension solutiofil 3] (this construction will be called in

the following the “normal rule’). This argument was also

generalized to secondary tip-splittings, using the notion of

virtual walls. They also observed a critical anglg~70°,

significantly smaller than the value predicted in Ref].  Here,Q stands for the net flux imposed at infinity afds

This appears to be the first unambiguous experimental set ¢fie surface tension coefficient, such that the pressure[giop

data clearly showing that the increasing complexity of theat the interface ifp]=Tx, « being the local curvaturéhis

patterns observed in the unstable regime corresponds toigithe Laplace condition

hierarchy of virtual cells of various sizes. Similar results The evolution equatiow,f=F(f) [10,19 of the confor-

have been obtained by Arneoéoal. for DLA clusters[14] ~ mal mapping is just a translation of the evolution equation of

and quasi-two-dimensional electrodeposition clusters. the interfacev,,= d,p, wherev , is the normal velocity of the
The rest of the paper is organized as follows. In the fol-interface andy,p is the normal gradient of the pressure. It

lowing section, we introduce the notion of the conformalhas been showfl0] that

mapping and the associated singularities. This will be used to

derive an approximate dynamical model that we study in the F(f(&1))=80.11(8), 4)

third section. Next, we consider the phase portraits of this

dynamical system and show the existence of attracting se

and relate them to selection rules. A final section will draw

some conclusions and perspectives.

2

1 T e el 5
Rew——Twé—”R 1+@ when |¢=1. (3

herel (¢,t) is the normal velocity at the point of the inter-
ace corresponding té:

1 de¢’ é+& 1
1(&)=5— Nt TE E i
Il. CONFORMAL MAPPINGS €1=11&" &' ¢ [ogf|
The basic difficulty in studying the evolution of the fluid x| — 2+ REE G 0()]]. )
interface in the classical Saffman-Taylor experiment is the 2m ¢

fact that the normal velocity at each point of the interface is_ ) o o
given by the normal gradient of the pressgrén the more This expression highlights the two contributions of the ve-

viscous fluid, which in turn satisfies the Laplace equation/City at the interface, the first one coming from the bound-

Ap=0, provided the Darcy approximation is assumed. The&y conditions at infinity(the net flux is fixed to be equal to
solution of this equation is not trivial, even numerically. A Q) and the other one being related to the Laplace condition.

convenient way to circumvent this problem is the use of al Ne expression oi () involves the evaluation of an inte-
change of variables, the so-called conformal mappiggt), ~ 9ral (Poisson kernel, and is difficult to compute explicitly
which maps the interior of the unit circl|<1 onto the ~due to the presence of the ternjdL/f|:

domain occupied by the more viscous fluid. Furthermore, the

! ! 2
interface at time, I'(t), appears now to be the image of the (6)=— T agm¢+é’ 1 rd 14 ,ag_ff
unit circle: for each poinzeI'(t), there exists an anglé (8)= 27 )jg=1 ig & ¢ |ogpf] 3 ot
= #(z,t) such thatz=f(e'?,t). The main interest of such a (6)

mapping is that the transformed Laplace equation in the new

& coordinates is again the Laplace equation. This is strictly In Ref.[15], w(£) was actually computed through a nu-
due to the fact that(¢,t) is conformal, which is analytic and merical evaluatiorf16] of the integral in Eq(6). This ren-

of nonzero derivative, in the interior of the unit disc. Further-ders the resulting equations difficult to study analytically
more, the solution of the Laplace equation in the interior of(and even numerical)y

the unit disk is explicitly known through the use of the Pois- The mappingdf (£,t) is analytic in 0<| £ <1 but may dis-
son kernel. Let us now be more precise. The conformal mapplay singularities outside. In the absence of surface tension,

ping will be written as the number and naturgocal exponentof each singularity
are conserved; namely, M singularities are present in the
a(t) initial condition, typically the asymptotic interface will dis-
f(&,t)=—+k(&1), (1) play N deformationg(protrusions in the case of poles fp,
¢ cusps in the case of zeros bf) that correspond to the ap-

proach of these singularities to the unit circle. The situation
wherea(t) can be chosen to be positive ak(i,t) is an is rather different in the presence of surface tendib.
analytic function in the whole disk, including 0. In the above Several authors have already shown that the effect of surface
equation, the first term corresponds to a circle of radi{i3, tension can be dramatic on the numkeneation of daughter
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singularities with exponent-4/3) and the motion of these exact form of the bottom of the fjord in the limit— + . In

singularities. It has also been shoWhl] that arbitrarily  order to do so, let us introduce the functiant — «(t) that

small values of surface tension may induce significant perwill be used as a parametrization of the interface. In order to

turbations of the interface i®(1) time. To give a physical get a finite limit ast— +«, it is necessary to sei(t)

description of this creation process, it is useful to refer to the= yp,(t) + ¢4(t), wherey is a parameter. The asymptotic,

situation created by the introduction of nonlinearities in ashape of the fjords is then

linear equation, such as the simplest linear diffusion equa-

tion. It is well known that in the linear case, any finite set of z(y)= lim f(e'“®.t), (11)

Fourier modes is an exact solution of this equatiavith t— o

periodic boundary conditionswhereas the introduction of o )

any nonlinearity induces the creation of small scale mode¥/hereye]—o,+=[. Taking into account the hypothesis on

that have to be taken into account. Similarly, in the absencte asymptotic behavior afy andpy, we get

of surface tension, any finite set of logarithmic singularities .

is an exact solution of Eq4) [17], even though the equa- 2(y)=2(12)+cy()(Iny1+y*—iarctany), (12

tions are nonlinear. This is due to the existence of conserva- ) i )

tion laws[18]. The addition of surface tension induces the Wherez(1,<) is the position of the bottom of the fiord when

creation of daughter singularities, with exponeng/3[10].  t— 1. This simple computation shows that the parametri-

Clearly, these new singularities are responsible for the suation of the interface in the vicinity of the bottom of the

face induced tip-splitiing process. fjprds is closely relgted to the dl;tance of the poles Fo th_e unit
In the following, we consider a simple model of this com- circle. The latter being asymptotically very small, this will be

plex process in which the singularities are strictly Iogarith-one of the main difficulties in the numerical implementation
mic: of the model.

N
a(t) . . Ill. THE DYNAMICAL MODEL
f(e)=—+2 2 c(tie ?™sIn[¢—py(t)e” "],
§& 1i=o From the above considerations, it is clear that the form
@) given by Eq.(7) is not an exact solution of the evolution
wheres is a positive integer. In Ref15], it was shown that equation(4). In the present case, this is due to the fact that
! the surface tension term induces singularities that are not

the restriction to logarithmic singularities is not a real limi- : . .
tation, because an accumulation of such singularities can als)_resent in Eq(7). Following the approach in Ref15], the

proach arbitrarily closd19] a singularity of the form £ dynamics will be defined in such a way that the error
— &) ~*2 as those expected in the present problem; namely, N s s 2
this boils down to the standard Padpproximation[19] of &)= E A(t) £-z(1) — 0, F(f (&) de
the functiong,f by a rational function, as can be seen b ~ Jjg=a|dt) g2 gon s s ¢ '

¢f by : y ld=1 £ k=1 £—py(t)
differentiation of Eq.(7). In the following, we will adopt the (13
following notation for this derivative:

is minimized. In other terms, at each tinhewe choose the

Cory Ez(D)® time derivatives of the variables, z,, andp, in such a way

def(ED=AE l_kI PP (8)  that the averagéon the unit circlg deviation between the
&= Pilt) physical dynamics and the dynamics of the model is mini-
where thez,’s (p’s) are the zerogpoles of 7 f(&,t). Be- mized. One of the advantages of using the logarithmic ap-

causef (&,t) is conformal in 6<|£/<1, we havez(t)|>1 proximation of the conformal mapping is that the minimiza-
and|p,(t)|>1. It is easy to see that tion of £(t) can be done in an analytic way. If the evolution

equation is written in the form{In[d; f (£,t)[}=F(&t), where
F(ED)=a L F(F(&))]/ 0, f:

at)=—AM 11 [Z®/pi(v)] 9
K 2
F(&H=| 1+ M [(E1)+Ea (1) (14)
and g! - g(?gf(é,t) gl 6 & gv ’
_ 1 the minimization yields the following linear system:
o= (Alspy’ )( H (Pk—2)) / Jl;[k (pi—pf)). (10 | .
. S 4 S Pj
In the following, we will note p,=(1+py)e'%, z=(1 2 (2"2)5—1 z_j_ T (zp)-1 p—j=F(1/zi*)—F(O),
+re'%. The position of the bottom of each fjord is b P (159
—Ae %+ ¢y In(@®—py) (we havez,~p, and p,—0 when
t— +0o0), and its width ism|c,|. This can be seen by inspect- . .
ing the behavior of the logarithmic function in the vicinity of S i S F(1/p*)—F(0),
¢=e€'%, For the sake of simplicity, let us consider the sim- T (p¥ z)*=1% T (pfp))°—1P; '
plest case of a single singularity. It is possible to obtain the (15b)
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4 unit circle, there is a significant incidence on the shape of the

interface and the fjords start to form. Notice also that the
couples initially present are not necessarily those that form
asymptotically. This should be compared to the asymptotic
results shown by Tanveer, which imply that the daughter
singularities are, at time®(1), in a neighborhood of size
O(T¥3 around the singularity of the zero surface tension
problem. Such a behavior is not immediately evident from
our data. The difference is probably due to the fact that the
value of the surface tension parameter we used here is not in
the range of validity of the results in RdfL0]. Let us also
notice that the distance that the pole singularities move away
from the unit disk decreases in our modelsults not shown
here when T decreases. A detailed comparison of such a
behavior against the perturbative calculations of Tanveer will
Y T S be reported elsewhere.
-4 -2 0 2 4 We have used three methods to evaluate the time deriva-

FIG. 1. A typical example of trajectories for the zer@ght tives_ of the dynamica_ll m(_)del. Th_e first methpd computes all
line) and the polegdark ling of 9, f in the complex plane. The the integrals appearng in the r'gh_t'hand sides) c_)f Eq.
corresponding interfaces are represented in Fig. 2. First far from thel 8 and (15b) by direct discretization on th¢ variables,
unit circle, the couples of singularities approch a it at different@nd the principal value integral needed to compwu(g) is

speeds. For the sake of clarity, parts of the trajectory of thezero done using the fast Fourier transforf6]. Unfortunately,
located near (1,1.5) at=0 are not representedz5|>18 att  When the poles get close to the unit circle, this transform

-2

=15). requires a huge number of points in order to approximate the
almost singular functions in the integrand if¢) and the
together with the equation method becomes quickly unpractical. A second approach re-
) . ) lies on the observation that
é:F(O)_S<Ei_E &) (15(:) 1 de’ &'+ '
A Tz, 9 p (Ed)=— — § &+& vn(g') 16

2 N iEr el AV

In Ref.[15], it was shown that despite its simplicity this Elm1 g &g 1o (e
model can account for many aspects of the tip-splitting in\yherey , is the normal velocity. In other words, oneg is
stability, and compares well to the interfaces obtained by &nown on the interface, relatiof16) provides the necessary
pseudospectral meth¢@0]. Here, we show an example that jformation to compute the time derivatives zf, p,, and
illustrates the typical behavior of the singularity dynamicsa Contrary to the first method, the discretization is done on
(Fig. 1) and the corresponding behavior for the interfacethe physical interface, and the recourse to the Fourier trans-
(Fig. 2). Six couples of zeros and poles are presefit=e.  form is not necessary,, can be computed using the methods
In order to obtain an almost circular interfacetat0, z,  jn Ref.[20], although an appropriate parametrization of the
~px,k=1,...,6. Thetrajectories of the singularities dis- jnterface is needed in order to get an efficient algorithm. The
play most of the time a first short regime where the dynamicumerical details will be given elsewhere.
is quite rapid and some of the zeros and poles can get quite A third method was introduced in order to get further
far from the unit circle, although eventually they becomeinsight into the structure of the dynamical systéh%) and
closer. Surprisingly, this regime does not have an analog iBrovide a fully analytical approximation of the surface ten-
the physical space: the interface evolves smoothly and onlgion term, by the use of a Padspproximation[19] to
in the second regime, when the poles get very close to th§/| d, f|. This is based on the identityalid for |¢|=1)

S__ S %S S_ 7S 1/p*S—1/z*S
&% _ [p \/1+ p \/1+ p
|§_—S_ ZS| Z*S ZS_ §S 1/2* S__ gs

(17)
and the Padapproximation
P
P) z—v, (P
Tiz= tim ] 2P 222l (18

P towa=1 Va(P) Z_/-La(P)1

wherev,(P) and u,(P) belong to I-«,—1[. Using these
FIG. 2. Successive interfaces corresponding to the set of singlexpressions, it is straightforward to compute the approxima-
larities of Fig. 1. tion (for |£]<1)
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(Fig. 4) significantly improves the approximation. It is worth
noting that the position of the third fjord is quite robust, a
fact experimentally observed by Lajeunesse and Colfler
Actually, the four new singularities can be placed almost
randomly(provided the zero-pole couple is far from the unit
circle); they eventually converge to a well defined angular
position. This will be partly explained below.

Using approximatiori19), the evaluation of the rhs of Eq.
(15) is straightforward. The resulting expression is somewhat
lengthy and will be given elsewhere. We thus obtain a closed
set of explicit evolution equations foA(z,,p,) of the form

FIG. 3. Comparison between the interface obtained by the pseu-
dospectral codéthick line) and that from theN-singularity model

with N=2 ands=4 (thin line). [A.zi,Pi]=Fp(A, 2z, Pi), (21)
ot E W1k n E W2k n W3a,k whereFp is a vector of algebraic functions, dependent on the
(&)~ wo K &2 K &-p wk £-pd k’ degreeP. This Padeapproximation will allow us to study in

"(19 detail the whole phase portrait determining the singularity
dynamics.

with The general analysis of such a system is still difficult. We
will rather study some generic situations. In order to mimic

I+tpe ¢ 1 the experimental results of RdB], we will first considers

e &4 Zpk’ a=1,...P, (20) symmetric solutionsg even, due to the zero-flux conditions

at the wall3, corresponding to viscous fingering in a wedge

where P is the order of the Padapproximation. Equation of angle 2r/s [21]. Under such conditions, the primary

(19) defines how new singularities are added to the modelfjords, associated with the couple,(p,) are parallel to the

starting from the set of initial singularitieg, ,p,, those walls of a wedge with angle2/s and the secondary fjords

given by the interface itself, the inclusion of the curvature[corresponding to4,p,)] yield the first tip-splitting.

term creates automatically tipg, , set. These new singulari-

ties are always located on the segment going fero py .

In order to reach the minimum af(t), new singularities IV. ONE-SINGULARITY SYMMETRIC SOLUTIONS

located atp, should.be addeq In Wrn as van_ables of the In a real experiment, the interface between the two fluids
model. Here, we decide to limit the set of variables to the

: . is initially smooth, which means that at the very beginning,
zerosz, and polespy of the interface. However, in order to y y beg g

illustrate how increasing the number of singularities im-aII the singularities are far from the unit circle and &)/ ¢

o . . term is predominant. Because of the constant flux condition,
proves the approximation to the actual solution, we show in

" 12 ; :
Figs. 3 and 4 the patterns obtained with, respectively24 a(t)~[A(D)| ~ 1% As the growth proceeds, all the singulari

L ties approach the unit circlglO], but this approach is hier-
and 4x3 couples of Z€ro pgles. The initial interface only hasarchical, in the sense that only a limited number of singulari-
4x2 couples of singularities that correspond to the 24

, A .ties can be located at a certain distance from the unit disk.
deeper fjords. The surface tension induces a secondary tip- In close analogy with previous studifgy, in Ref.[21] we

tsr?(l,ltit:t]grgléhceofrlgse z;gr:ﬁ trt]fl:ﬁ;t“{'rﬂge?;gﬁjgg];igs ”Srifn OBtudied the selection mechanism that fixes the value of the
in Figs. 3 and 4 Ad%ing fogur new couples of singularities width of the primary fjords, i.e., the valug(t) of the closest
: ' (primary) singularity. We give here a detailed presentation of
this point.
When only one singularity is present, the system of equa-
tions (15) becomes

s __
pa,k_

sz s E—F 1/z)—F(0), (22
(Z*2)°-12 (z*p)°—1 p (1iz ©).

sz s p
(p*2)°-12 (p*p)°—1P

=F(1l/p*)—F(0). (23
FIG. 4. Same as Fig. 3 but witN=3. The increase in the

number of singularities gives a better approximation of the third tip
splitting. This system can be solved to yield
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1

_(|p|25—1><|z|23—1>>'g
(pze)°-1]> |z

2%~

- ([F(llz*)—F(O)]

~ pl*-1

——[F(1/p*)—F(0)] |, 24
el ()]) (24)

( (|p|25—1><|z|25—1))b
1_ —
l(p*z)s—12 /P

2s__ 2s__
_ vl 1( 271 e —F )]

s \(pr2°-1

—[F(llp*)—F(O)])- (25

From the equations above, it is clear thatzifand p are
initially real, they remain real for all timefin that case,
F(0), F(1/z*), andF(1/p*) are also redl Furthermore, we
have seen that the argumentatan be chosen to be inde-
pendent ot (IM[F(0)]=0) so thata is also real. Therefore,
we just have to consider the variablesr, andp.

In the limit p—0, Egs.(24) and (25) become

#:[1+O(p)][(1+ ry2—1][F(1/z*)—F(0)]/s
—2p[1+O0(p)I[(1+1)>+1][F(1/p*)—F(0)]
(26)

and

2%=[1+0(p)][(1+r)5+ 1][F(1/z*)~ F(0)]

—[1+0(p)I[F(1/p*)—F(0)]. (27)

At this point, it is convenient to separate fnthe contri-

bution due to the flwQ from that one due the surface ten-

sionT: F=Fqo+Ft. TheFq term can be computed explic-
itly:

B PR Q
U DI EC
Q1
FQ(l/p]-) EW
[ -rey |
k' (1=2zpj ) (1—pypj )

a, 1+zp’s
A L.

PHYSICAL REVIEW EG9, 026301 (2004

2spfa
-2 ) 29
kK (1=zp;
and
_ s _S(ZS_ S)
Fo(1/z) 2_Q_2 —1+ isk pks*s
7 |A| kK (1-z77°)(1-pgz°)
" ﬂl+z§zfs+ B> 2sZ"%ay
Kz 1-z2°° K (1-zz?)
(30

which leads, in the limip— 0, to the following expressions:

F 0)~gi 2 (31)
o 27 | A2 (1+1)1+(1+1)5]
Fo(1/z*) —Fo(0) ~ > —— 2
o) =Fel0= 57 A2 [(1+1)%+1]2(1+1)
(32)
Q 1 (s—2)(1+r)%+2

Fo(1p*)=Fo(0)~ 5~ JAZ [(14+1)2—1](1+1)>

(33

On the other hand, in the limig—0 andr—0, we find that

F1(0)~TaglA|3p% 1, (34)
F(1/z*) — F(0)~Tay| Al ~3p%r 73, (35
Fr(1/p*) = F(0)~—Tay|Al"%p 72, (36)

whereay, a,, anda, are positive constants.

WhenT=0, we get from relation$26), (27), (32), and
(33

r __gi 2[(1+7r)5—-1]
1+r 277|A|2s[(1+r)5+1](1+r)3[1+o(p)]'
(37)
and
' 1
r__Q ;[HO(p)]. (38)

20 2m|AlZ (141)%-1

From Eqgs.(37) and(38), the asymptotic behavior afandp
in the limit p—0 andr—0 is

o
r~ ﬁ’ (39)
p~poe o, (40)
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15 R A 1 T

log(r)

log(t} log(t)

FIG. 5. Comparison of the behavior oft) ast— -+« when(a)
T>0 (all the initial conditions converge to a unique soludi@nd
(b) T=0.

Therefore, wheT=0, r,(t)~t~ %2 and all the fjords have a

fixed, but arbitrary width~ 7|A(t)|r(t), dependent on the
initial condition. It should also be stressed that théseac)
solutions are not self-similar.

For any positive value of, the evolution equations be-

come
ae st % (41)
“%ﬁ 2T(|OZ|—;§“")' @2
oo Py T 43)

- :
27 |AlPr AP

Assuming 1lar=0(1) whent— +«, we get from Eqg.
(41) thata~ag\/t, thus|A|~Agyt with Ay=\/Q/# and the
behavior ofA is significantly the same as wifhi=0.

The behavior of the right-hand side of E@2) ast—

+oo results from the balance of two opposing terms. The
first, independent of, term is dominant for the large values

of r, whereas when becomes small, the secometlependent
term becomes dominant. The solution of E4Q) is

6T(a,+2a,)
AS

r3~ +C, |t7%2 (44)

whereC; is a constant of the integration. Equati@i®) is a
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FIG. 6. A comparison between the interface obtained by a pseu-
dospectral codéhick line) [20] and the approximation by the two-
singularity modelthin line). The middle point of the fjord entrance,
as computed with the second of these methods, is also represented.

The evolution equatio43) for p can also be integrated
and shows a similar behavior. We have

6Qtl/6

2mwAr,

, (45

p~[Cso+ R(t)]exp( -

whereC, is a constant with respect toand R(t) reads

Ta, (t 6QxY/6
R(t)=—- gf X~ Bex SQxT 5

As forr, the surface tension changes drastically the evolution
of p whent— +o. It can be showr(with two integrations
by parts, for instangethat the leading term is

dx. (46)

21 Tap oy

~— (47)
Q Aoro
V. SYMMETRIC SOLUTIONS WITH TWO
SINGULARITIES

We now turn to the study of symmetric solutions with two
singularities. This corresponds to the study of the first tip-
splitting in the wedge experiments of Coud&i: the pri-
mary singularities form the fjords parallel to the walls of the
wedge-shaped cell and the secondary singularities will form
the tip-splitting. According to their experimental observa-
tions, it should be expected that the fjords formed in this
process are curved when the secondary singularities are far

typical example of singularly perturbed system: for anyfom the bisector. Figure 6 shows a typical example of how
small value ofT, the perturbative termllbecomes eventuallythe two-singularity model approaches curved fiords. In this
dominant. We conclude tha(t)~ry ¢ % where the con- figyre, we compare the interface evolutions obtained by our
stantr, o depends off and on the symmetry, but is indepen- model and by a pseudospectral cd@€]. The same initial

dent of the initial condition. Therefore, in the present con-condition has been used in both cases. The first tip-splitting
text, the selection of a particular solution |mp~lles thegives a secondary curved fjord, which is approached by a
existence of a stable fixed point for the variablg(t) straight fjord that changes its orientation in such a way that
=|A(t)|¥3 4(t), to which all the solutions are attracted. An the middle point of its entrance describes accurately the

illustration of this behavior is given in Fig. 5, wherét) has
been plotted as a function ofor different initial conditions,
both with T>0 andT=0.

Let us note that this methd®1] of explaining selection

curved fjord. The last tip-splitting observed in this figure
cannot be accounted for by the two-singularity models, by
definition.

The aim of this section is a complete description of the

in viscous fingering is completely independent of previousdynamics generated by the interaction between primary and
approaches and yields a new argument in favor of the microsecondary singularities. To achieve this goal, several ap-

scopic mechanism hypothe$22].

proaches are possible. In R¢21], we considered a repre-
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FIG. 7. Phase portrait in the {, 8,) space, obtained with, and FIG. 8. Plot of the predicted asymptotic valués, of &, as a
¢, fixed, s=4. All the trajectories converge towards a fixed point function of ¢, for a series of independent simulatioss; 6. Con-
located in the vicinity of (0.11,0). tinuous line: nonasymptotic values obtained in the simulation with

two couples of singularities. See text for further details.

sentative set of particular solutions of the two-singularity _

model, and concluded the existence of a bifurcatios gmes Properly speaking, the method to eliminateand 5, is
from 4 to 6. Although informative, this approach does notnot an adiabatic reduction, in the sense that there are not two
really explain how this bifurcation occurs as, for instance,different time scales in Eq21). In this sense, the method is
there is no indication about the existence of unstable fixe@xpected to be accurate only asymptotically. In order to test
points. Here, we adopt a different strategy and draw thdhis point, we run a set of simulations in which, ¢ 6, the
phase portrait as given by the Paafgoroximation21). As a  initial angular position of the secondary singularity is varied.
first approximation, the primary singularities will be consid-FZ’O and 6, o can be compute¢Figs. 8 and Peither by using
ered as fixedthis approximation was not used in Figl.6 (z,,p,) as given by the selected one-singularity solution
This is certainly reasonable provided the primary and sectdots in which casez, and p; are mostly constant or as
ondary singularities are well separated angularly, but begiven by the computed two-singularity solutiofopen
comes problematic as soon as they get close. Still, we are lefiquares In the second casezq,p;) can significantly differ
with a set of four real coupled equations that govern thefrom the one-singularity solution. In Figs. 8 and 9 are also
evolution ofz, andp,. In order to proceed further, we need shown the actugihonasymptoticvalues taken by, andr .

to eliminate “irrelevant” degrees of freedom. A possibility, These data give support to the claim that the asymptotic

inspired by the notion of stable manifold3], is to look for  papavior off, ands, is governed by the position of the fixed
attracting sets in the space,(p-, 6, ,¢,). If those exist, it is L~
Bomtsrzp and 6, .

possible to study the dynamics constrained to any of thes ! . .
sets, which amounts to an effective reduction of degrees of T~h e asymptotic phase portrait as reduced to the manifold
freedom. By analogy with the situation encountered in the 2=F2.0P2,$2), 0= 8, p2.¢2) for s=4 and s=6 can
study of the primary fjords, it should be expected that the
width of the secondary fjords is selected with a value pre-
sumably dependent on the relative position of its closest

neighbors. Inspired by the “normal ruld8], it should also 02 L i
be expected that the orientation of the fjord is not arbitrary, I /

but depends onp,. The width and orientation of the fjord ~ |

associated with the couple,p,) are given by the module 2] ofo [Jofs
and phase ofc, which asymptotically behaves as I o Sl
—Ae "*r,+i(6,— ¢,)]. Therefore, we expect that, for 0.1 L T twe o RO

a

each set of values df;,p;,p,, 95, there exist stable fixed
points forr, and ¢,— 65, to which the solutions are at- I
tracted. This indeed is the case, as can be seen in Fig. 7. L |
Before drawing the reduced phase portrait, it is useful to I
make time independent the attracting sets. We have found it oL® .

convenient to look for fixed point~52,0 and 8, ¢ of the res- 0 10 6> 20 30

caled variables,=|A|Y%r, and 8,=|A|*3(6,— ¢,). From a . . e

numerical point view, the fixed points are found by iterating, C: % Plot of the predicted asymptotic valueg, of rj as a
. . function of ¢, for a series of independent simulatioss; 6. Con-

a Runge-Kutta algorithm until the time derivativesandd,  tinuous line: nonasymptotic values obtained in the simulation with
are smaller than some threshold. two couples of singularities. See text for further details.
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45
()

FIG. 12. Example of the solutions obtained with two couples of
principal singularities, separated by an angle of 50°, interacting
with a third couple that leads to the tip-splitting.

0 . . . .
1.02 11 corresponds to the formation of a secondary fjord in one side
P12 of the main finger.
FIG. 10. Reduced vector field describing the dynamics of
(p12,¢2), s=4. VI. NONSYMMETRIC TWO-SINGULARITY SOLUTIONS

now be computed. In order to obtain a time independent In the Introduction of this paper, we mentioned the experi-
phase portrait, we use;,=In p;/In p, instead of the variable mental findings of Lajeunesse and Couff&fabout the ex-
p». The corresponding phase portraits $sr4 ands=6 are istence of a critical anglé. such that for wedge angle,
shown in Figs. 10 and 11. The differences between the twe< 4., the symmetric tip-splitting is unstable. The results pre-
are striking. Fors=4, a fixed saddle point exists¢g sented in the preceding section show that=2@;=60°. To
~40°,p,,~1.02), splitting the phase space into two regions:get a more precise value @, we need to relax the sym-
(i) the basin of attraction of the symmetric tip-splitting and metry constraints. For this, we considergd 2 singularity
(i) all the solutions that are eventually attracted¢tp=0. configurations withtwo couples of principal singularities, an-
When s=6, the first region disappears, as the fixed pointgularly separated by an arbitram. This reasonably ap-
becomes unstable in the two directions. The asymptotic begroaches a wedge geometry with apex angje as can be
havior of the ¢,—0 solutions is also different in the two seen in Fig. 12. However, it is worth stressing that the
cases. Whes=4, p,, grows without limit as¢,—0, and  asymptotic value ofj, is not necessarily that given as the
p,~z;, which implies that £,,p,) gets very close to the initial condition. This is due to the delicate balance between
principal singularities and simply corrects the singularitythe principal-principal and principal-secondary singularity
structure of the primary fjord. Therefore, in this case, there isnteractions. This also reflects the fact that the singularity
no formation of a secondary fjord. According to Tanveer'sdynamics in a wedge is certainly simpler than that in an open
theory[10], a singularity with a—4/3 exponent is expected geometry. For each of the values @f reported in Fig. 13,
rather than a simple pole or even a collection of poles, as isvhich correspond to the asymptotic value of the angular
the case in the model. It should be expected that the correseparation between the principal singularities, we computed
tions to the singularity structure provided by the secondhe reduced phase portrait as explained in the preceding sec-
couple @,,p,) are such that, locally, the interface is closer totion. The angular position of the saddle point has been re-
that given by a—4/3 singularity. This remains to be proven. ported in Fig. 13. The fact thaf/2— 6.,4qd> behaves lin-

On the other hand, whes=6, p,, stays bounded. This early as a function o);—60° supports the claim that the

saddle point arises from a pitchfork bifurcatid23] at

30
20 :_I T T T I T T T T I T L T :
o L ]
—~~ - b
[ - 4
< 15 =
o C ]
g C ]
b2 q|3 10 £ 3
@ | z
=) S ~
Q - -
0 0 11 1 1 I 1 1 1 1 I 1 11 1 '_
1.1 1.8 0 10 20 30

P12
0,—60 (deg.)
FIG. 11. Reduced vector field describing the dynamics of
(p12,bo), S=6. FIG. 13. Plot of Mo/2— Osaqq® @s a function offy—60°.
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0y=60°= 6. This is compatible with the experimental ob- =0.40[25], which impliesD;=1.86 using the approxima-

servations of Lajeunesse and Coufi&R4]. tions in Ref.[3]. We leave as an open question whether the
above considerations can be generalized to more general
VII. CONCLUSIONS situations. In the simplest mean field model studied so far,

) ] such as that in Ref3], it is assumed that the selection rules
In this paper, we have studied a model for the growth ofgerived at the beginning of the growth can be applied in the
the interface separating two immiscible fluids in a Hele-gypsequent stages of the growth. This is not obvious from the
Shaw cell. The model is based on the assumption that thgyym of the coupling between different singularities, which
shape of the fiords that form on the interface is logarithmic.gecays fairly slowly[as 1/¢—z')%. A somewhat unex-
This appears to be a rather natural assumption when viewgghcted consequence is that the random appearance of the

as a Padepproximation to the conformal mapping of the tjp_gpiitting phenomenon actually boils down to a slow
interface. One advantage of the model is that it become Tt~ 6) convergence to a limited number of fixed points:

exact for zero surface tension, and yields explicit dynamica ,=0° when 6,<60°, ¢,=0° or ¢,= /2 otherwise. In

equations otherwise. The study of the latter shows that presther words, the apparent dependence on initial conditions in
vious results concerning the existence of selection rules ag;scous fingering is quite different from that of classical
tually boil down to the existence of fixed points for the dy- fijte-dimensional chaos. The picture suggested here is rather
namics of certain variables. Moreover, the same argumenfa¢ of 4 dynamical system with an infinite number of saddle

can be extended to more complex situations, where primary,ints that are explored successively as the singularities ap-
and secondary fjords interact. In particular, we have ShOW'E)roach the unit circle.

that it is possible to derive selection rules for the width and
orientation of the secondary fjords, in agreement with the
experimental observations of Lajeunesse and CoUiler
However, it is still unclear why the additional singularities
that correct the logarithmic shape imposed in the present All the simulations presented in this paper were done us-
model do actually arrange in such a way that the middle linéng the computer resources of thel@®I3PEC, Bordeaux 1
of the fjord follows what we have called the “normal rule.” University. The authors acknowledge stimulating discussions
Our analysis yields also a critical anglge,=60°, andB  with A. Sebbar, A. Arneodo, Y. Couder, and M. Ben Amar.
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